

Non-invasive Determination of Depth in Turbid Media using Spatially **Offset and Transmission Raman Spectroscopy**

Conclusions

- turbid medium

Model	Error of calibration RMSEC (%)	Error of prediction RMSEP (%)
1: SORS + TRS	3.4	4.3
2: TRS	4.9	6.2
3: SORS	5.6	6.7

Next step

- ³ Remove the need for internal calibration
- (fully non-invasive and *in vivo* applicable)
- \rightarrow Validate on *ex vivo* tissue^[3] (real case scenario)

References

[1] B. Gardner, N. Stone, P. Matousek, Anal. Chem. 2017, 89, 9730 [2] Mosca, S.; Dey, P.; Tabish, T. A.; Palombo, F.; Stone, N.; Matousek, Anal. Chem. **2019**, 91, 8994 [3] Mosca, S.; Dey, P.; Tabish, T. A.; Palombo, F.; Stone, N.; Matousek, P. J. Biophotonics, **2019**, 1–7

Acknowledgments

The work was supported by an **EPSRC** grant EP/R020965/1

[©] Non-invasive prediction of depth for a single buried object within a

© Combined used of SORS and TRS improved the prediction

[©] More robust to variation of thickness and amount of target

